转载

如何避免回表查询?什么是索引覆盖? | 1分钟MySQL优化系列

原文链接:https://post.mp.qq.com/kan/article/1001000150969-543318163.html?sig=52e0b569fa76c94e2a637cc6799a10b7&time=1564448687

留了一个尾巴《tail》:

select id,name where name='shenjian'

select id,name,sex where name='shenjian'
  • 多查询了一个属性,为何检索过程完全不同?
  • 什么是回表查询?
  • 什么是索引覆盖?
  • 如何实现索引覆盖?
  • 哪些场景,可以利用索引覆盖来优化SQL?

这些,这是今天要分享的内容。
画外音:本文试验基于MySQL5.6-InnoDB。

一、什么是回表查询?

这先要从InnoDB的索引实现说起,InnoDB有两大类索引:

  • 聚集索引(clustered index)
  • 普通索引(secondary index)

InnoDB聚集索引和普通索引有什么差异?

  • InnoDB聚集索引的叶子节点存储行记录,因此, InnoDB必须要有,且只有一个聚集索引:
    1. 如果表定义了PK,则PK就是聚集索引;
    2. 如果表没有定义PK,则第一个not NULL unique列是聚集索引;
    3. 否则,InnoDB会创建一个隐藏的row-id作为聚集索引;
      画外音:所以PK查询非常快,直接定位行记录。
  • InnoDB普通索引的叶子节点存储主键值。
    画外音:注意,不是存储行记录头指针,MyISAM的索引叶子节点存储记录指针。

举个栗子,不妨设有表:

t(id PK, name KEY, sex, flag);

画外音:id是聚集索引,name是普通索引。

表中有四条记录:

1, shenjian, m, A

3, zhangsan, m, A

5, lisi, m, A

9, wangwu, f, B

两个B+树索引分别如上图:

  • id为PK,聚集索引,叶子节点存储行记录;
  • name为KEY,普通索引,叶子节点存储PK值,即id;

既然从普通索引无法直接定位行记录,那普通索引的查询过程是怎么样的呢?
通常情况下,需要扫码两遍索引树。
例如:

select * from t where name='lisi';

是如何执行的呢?
在这里插入图片描述
如粉红色路径,需要扫码两遍索引树:

  1. 先通过普通索引定位到主键值id=5;
  2. 在通过聚集索引定位到行记录;

这就是所谓的回表查询,先定位主键值,再定位行记录,它的性能较扫一遍索引树更低。

二、什么是索引覆盖(Covering index)?

额,楼主并没有在MySQL的官网找到这个概念。
画外音:治学严谨吧?

借用一下SQL-Server官网的说法。

MySQL官网,类似的说法出现在explain查询计划优化章节,即explain的输出结果Extra字段为Using index时,能够触发索引覆盖。

不管是SQL-Server官网,还是MySQL官网,都表达了:只需要在一棵索引树上就能获取SQL所需的所有列数据,无需回表,速度更快。

三、如何实现索引覆盖?

常见的方法是:将被查询的字段,建立到联合索引里去。

仍是《tail》中的例子:

create table user (

id int primary key,

name varchar(20),

sex varchar(5),

index(name)

)engine=innodb;

第一个SQL语句:

select id,name from user where name='shenjian';


能够命中name索引,索引叶子节点存储了主键id,通过name的索引树即可获取id和name,无需回表,符合索引覆盖,效率较高。
画外音,Extra:Using index。

第二个SQL语句:

select id,name,sex from user where name='shenjian';


能够命中name索引,索引叶子节点存储了主键id,但sex字段必须回表查询才能获取到,不符合索引覆盖,需要再次通过id值扫码聚集索引获取sex字段,效率会降低。
画外音,Extra:Using index condition。

如果把(name)单列索引升级为联合索引(name, sex)就不同了。

create table user (

id int primary key,

name varchar(20),

sex varchar(5),

index(name, sex)

)engine=innodb;

执行一遍查询:

select id,name ... where name='shenjian';

select id,name,sex ... where name='shenjian';


可以看到,上面两个查询都能够命中索引覆盖,无需回表。
画外音,Extra:Using index。

四、哪些场景可以利用索引覆盖来优化SQL?

场景1:全表count查询优化

原表为:

user(PK id, name, sex);

直接:

select count(name) from user;

不能利用索引覆盖。 因此,添加索引:

alter table user add key(name);

就能够利用索引覆盖提效。

场景2:列查询回表优化

select id,name,sex ... where name='shenjian';

这个例子不再赘述,将单列索引(name)升级为联合索引(name, sex),即可避免回表。

场景3:分页查询

select id,name,sex ... order by name limit 500,100;

将单列索引(name)升级为联合索引(name, sex),也可以避免回表。

InnoDB聚集索引普通索引,回表,索引覆盖,希望这1分钟大家有收获。

0 个人打赏
文章最后发布于: 2019-08-13 09:21:25
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览